7和13的最小公倍數(shù)是多少
公倍數(shù)就是兩個(gè)或幾個(gè)數(shù)公有的倍數(shù),其中最小的那個(gè)就是最小公倍數(shù)。因?yàn)?和13都是質(zhì)數(shù),所以它們是互質(zhì)關(guān)系,最小公倍數(shù)就是它們的乘積。
7和13的最小公倍數(shù)是多少
最小公倍數(shù),意思是說(shuō),這個(gè)數(shù)能夠同時(shí)讓七和十三除盡,是它們共同的倍數(shù)。通過(guò)演算,這二位數(shù)的最小公倍數(shù)是九十一。因?yàn)榫攀皇瞧吆褪墓餐稊?shù)積。最小公倍數(shù)常用于分?jǐn)?shù)的加減法中的通分。也就是求出二個(gè)分?jǐn)?shù)中的分母共同的最小倍數(shù)積,使它們的分母相同,然后再進(jìn)行加減運(yùn)算。
7和13的最小公倍數(shù)是91。
7和13是一對(duì)互質(zhì)數(shù),因?yàn)榛ベ|(zhì)數(shù)的最小公倍數(shù)是它們的積,所以7和13的最小公倍數(shù)是7乘以13的積,即最小公倍數(shù)等于91。
也可以按步驟一步步計(jì)算。因?yàn)?的因數(shù)是1、7,13的因數(shù)是1、13,所以7和13的最大公因數(shù)是2,最小公倍數(shù)是7×1×13=91。
能被7和13整除數(shù)的特征
我們首先把七和13的最小公倍數(shù)找出來(lái),七乘以13等于91,那么91的倍數(shù),都能被七和13整除。如何求最小公倍數(shù)呢,有兩種辦法,一種是短除法另一種是直接相乘。如果2個(gè)樹,之間有公因數(shù),像四和六,像這種類型我們用短除法。如果兩個(gè)數(shù)沒(méi)有公因數(shù),直接相乘就可以了。
能被7和13整除的數(shù)分解因式后,因子里面包含7和13兩個(gè)數(shù)成這兩個(gè)數(shù)的被數(shù)。用式子表示為±7ⅹ13n,n為自然數(shù),即1、2、3……,±7x13ⅹn被3和7整除后得±n。
能被3和7整除的絕對(duì)值最小的數(shù)是91,因此,能被7和13整除的數(shù)還可表示為±71n,n為自然數(shù)。
7和13的整除特征推導(dǎo)過(guò)程
7和13的整除特征可以通過(guò)數(shù)學(xué)推導(dǎo)得出。我們知道,如果一個(gè)數(shù)可以被另一個(gè)數(shù)整除,那么這個(gè)數(shù)一定是另一個(gè)數(shù)的倍數(shù)。因此,我們可以列出一組數(shù),分別是7的倍數(shù)和13的倍數(shù),來(lái)觀察它們的共同特征。
經(jīng)過(guò)分析,我們可以發(fā)現(xiàn),7和13的倍數(shù)在取模11的余數(shù)上呈現(xiàn)循環(huán)性。
具體來(lái)說(shuō),7的倍數(shù)在取模11的余數(shù)上循環(huán)4次,分別是0、7、3、10;而13的倍數(shù)在取模11的余數(shù)上循環(huán)6次,分別是0、2、4、8、10、3。
因此,當(dāng)一個(gè)數(shù)同時(shí)滿足在取模11的余數(shù)上是7的倍數(shù)和13的倍數(shù)時(shí),它就是7和13的公倍數(shù),即7和13的整數(shù)倍。
家長(zhǎng)熱搜
精彩問(wèn)答
錦囊妙計(jì)
· 計(jì)算不好的孩子如何訓(xùn)練
07/19· 數(shù)學(xué)計(jì)算能力怎么提高
07/19· 一年級(jí)數(shù)學(xué)怎么學(xué)
07/17· 二年級(jí)數(shù)學(xué)學(xué)不好怎么辦
07/17· 三年級(jí)數(shù)學(xué)怎么預(yù)習(xí)
07/13· 三年級(jí)數(shù)學(xué)巧算方法
07/13· 三年級(jí)比較大小的方法
07/12· 三年級(jí)乘法的估算方法
07/12· 小學(xué)數(shù)學(xué)應(yīng)該怎么學(xué)
07/12· 一年級(jí)數(shù)學(xué)理解能力差怎么提高
07/12